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Lecture 6: Fundamentals of
Computer Vision

Allen Y. Yang

Fall, 2017
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Course Schedule Update

Week 1 (8-23): Introduction and Capstone Options

Week 2 (8-30): Human Perception in the Context of VR

Week 3 (9-6): Basic Unity3D/VR Programming Workshop
Week 4 (9-13): Course project proposal presentation

Week 5 (9-20): Optics and Display technologies

Week 6 (9-27): Vision Accommodation and Vergence

Week 7 (10-4): Computer Vision related topics

Week 8 (10-11): Computer Graphics related topics
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Week 9: (10-18) Telemedicine (Ruzena Bajcsy/Gregorij Korillo)
Week 10 (10-25): Gaming (Jack McCauley)

Week 11 (11-1): VR Film Making (Richard Hernandez)

Week 12 (11-8): AR/VR in Arts & Design (Ted Selker)

Week 13 (11-15): Computational Imaging for VR (Ren Ng)
Week 14 (11-22): No class

Week 15 (11-29): Final project presentation

Week 16 (12-6): Final project presentation Berkele
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Recommended Reading Material

Perception: Sensation and Perception
by Bruce Goldstein

Virtual Reality: Virtual Reality
By Steven LaValle (and checkout his YouTube lectures)

Computer Graphics: Fundamentals of CG
by Peter Shirley

Computer Vision: An Invitation to 3-D Vision
by Yi Ma, et al.

 Display: Mobile Displays
by Achin Bhowmik, et al.

 AR/VR Market Research: Virtual & Augmented Reality,
understanding the race for the next computing platform
by Goldman Sachs B@glgqley



Anatomy of an AR Device: HoloLens

Including perception & display, end-to-end latency
not exceeding 16ms (60 fps)
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What can Computer Vision do?
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Fundamental Problems of Computer
Vision

Camera Obscura, circa 400BC Holmes stereoscope, 1861
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Image Matching using Robust Features



Part I: Basic Linear Algebra

Rigid Body Motion
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Change of Coordinate Systems

Xw — chXc + Twc-
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Special Orthogonal Group

SO(3) = {Re R**® | R"R =I,det(R) = +1}.
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Be Aware of Left-Handed or Right-
Handed Coordinate Systems
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Homogeneous Coordinates &
Special Euclidean Group SE(3)

_ R, T,||Ry T RiRy, R\T+T
Concatenation: 9192 = !01 11] !OZ 12] =! 10 2 ! 21+ 1] € SE(3)

4 lR T]_l B lRT —RTT

Inverse: 0 1 0 1

] € SE(3).
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Estimation of (R, T)

Translation Only:

Rotation Only:

A : Y |
}i - .X,’ +T & }CL'HfTOi(f - - - "‘chntroid +T
Y; = RXj;
; i . - 112
= R' =arg min E |RX: — Yi||
ReS0O(3) ~

2
since Y~ [|[RX; — Yi||* = Zf’X-TX» —2YTRX; +Y]Y;)

1

= R’ = arg min E (—Y ’TR\” = arg max (Y TR\ )
ReSO(3) ReSO(3)
1

further Zf}TR\"—tl( TRX) =tr (RXYT)

let SVD( _.\').'Tj _uyyT
= R’ = argmaxtr (R[ YV T) — arg max tr (\-,‘ T Rir )

since X 1s diagnal with non-negative values and V TRU ¢ SO(3)

= maxtr (SVTRU) = tr(X) iff VIRU =1
= R* =VU’.

Don’t forget to check right-handedness!
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Part II: Geometry of Pinhole Camera
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* OpenCV Online Documentation



Pinhole Camera Parameters

Intrinsic parameters

1§

x'=x/z
y' ' =y/z
u="~F *xx"+c,
v:fy*y’+cy

Extrinsic parameters
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Camera Calibration using OpenCV
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Camera Distortion Rectification
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Part Ill: Structure from Motion

SfM Problem

Assume multiple 2D images of 3D points and their correspondence are
known, estimate their 3D locations and the transformations (R, T).
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Definition: hat operator

uXxv = ui+usj+usk)x (vqi+vej+rvzk) =

0 —uz 1w
A : T
= u = Uz 0 —u | ER
—uz Ul 0

= U XV =uv

Quick Facts:

1. auxu=1~0
2. uXv=-—-vxu
3. uxv-u=uxv-v=1
4.

u-(vxwl=v:-(wxul=w-:{uxv]

0

13
— U2

—U3
0
(5]

2 "
—1q U2
0 U3
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Epipolar Constraint

Xo=RXqy+T
= ,«\2)§2 = M R)g + T
= ,\grxz = T Rx1
= XgTXQ == ngRxl

The matrix is called the essential matrix.

E=TR ¢€R3>3
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Properties of Epipolar Constraint

Conditions on the epipoles

es ~Tande; ~ RTT,

elE=0, Ee; =0.

Conditions on the epipolar lines (by co-images)

In each image, both the image point and the epipole lie on the epipolar line

Lle;=0, £ x;=0, i=1,2. (5.5)
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Estimation of Essential Matrix
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Enforcing Essential Matrix
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8-Point or 7-Point Algorithm
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What if correspondence has error:
Random Sample Consensus (RANSACQC)
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Decomposition of E Matrix
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Decomposition of E Matrix
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About Depth Cameras

Time of Flight

Blur:

Depth from Defocus

Structured Light

Light Field Camera
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Part IV: Feature Matching

Features in images are not just O-dim abstract points, their local appearance can
be used to improve matching across images
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SIFT (Scale-Invariant Feature Transform)
Step 1: Feature Detector

What is a corner point?
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SIFT (Scale-Invariant Feature Transform)
Step 1: Feature Detector
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David Lowe’s Solution:
Difference of Gaussian

Typically, detection of SIFT combines both corner detection and DoG detection
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* David Lowe, Distinctive image features from scale-invariant keypoints, IJCV 2004



SIFT (Scale-Invariant Feature Transform)
Step 2: Feature Descriptor

IIIIIIIIIIIIIIIIIIIIII



SIFT (Scale-Invariant Feature Transform)
Step 3: Histogram Matching
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SIFT (Scale-Invariant Feature Transform)
Step 3: Histogram Matching
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OpenCV Sample Code
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